Matrix : Matrix is a rectangular arrangement of numbers arrange in some rows and columns. Generally a matrix enclose by () or [] or ||. The number of rows and columns is called the order of the matrix.

Example:

(i) Let A be defined by the following matrix with order $m \times n$ i.e. m rows and n columns

	1	2		n _
1	a_{11}	a_{12}	•••	a_{1n}
2	a_{21}	a_{22}		a_{2n}
3	a_{31}	a_{32}		a ₃ n
:	•		÷	:
m	a_{m1}	a_{m2}	•••	a_{mn}

(ii) $A = \begin{bmatrix} 1 & 3 & 2 \\ 8 & 3 & 3 \\ 2 & 3 & 5 \end{bmatrix}_{3\times 3}$ is a matrix of order 3 × 3 i.e. containing 3 rows and 3 columns. (iii) $A = \begin{bmatrix} 1 & 2 & 4 \\ 8 & 3 & 6 \end{bmatrix}_{2\times 3}$ is a matrix of order 2 × 3 i.e. containing 2 rows and 3 columns.

Types of Matrices:

Square matrix

A matrix is said to be a square matrix if the number of rows is equal to the number of columns.

For example, $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix}$ is square matrix containing 3 rows and 3 columns.

Rectangular Matrix

A matrix is said to be a rectangular matrix if the number of rows is not equal to the number of columns.

Example, A is a matrix of the order 3×2 . A = $\begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 2 \end{bmatrix}$

Diagonal matrix

A square matrix A is said to be a diagonal matrix if all its non-diagonal elements are zero. For

example, $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix}$

Zero or Null Matrix

A matrix is said to be zero matrix or null matrix if all its elements are zero.

For Example, $A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

Upper Triangular Matrix

A square matrix in which all the elements below the diagonal are zero is known as the upper

triangular matrix. For example, A = $\begin{bmatrix} 2 & 2 & -1 \\ 0 & 5 & -4 \\ 0 & 0 & 3 \end{bmatrix}$

Lower Triangular Matrix

A square matrix in which all the elements above the diagonal are zero is known as the upper

triangular matrix. For example, $A = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 5 & 0 \\ 1 & 3 & 3 \end{bmatrix}$

Transpose of a Matrix:

The transpose of a <u>matrix</u> is simply a flipped version of the original matrix. We can transpose a matrix by switching its rows with its columns. We denote the transpose of matrix A by A^{T} . For

	[0]	2	-1]		[0]	-2	1]
example, if A =	-2	0	-4	then $A^{T} =$	2	0	4
	L 1	4	0]		l-1	-4	0]

Symmetric matrix.

A matrix can be symmetric only if it is square. If the transpose of a matrix is equal to itself, the matrix is said to be **symmetric**. This means that for a matrix to be symmetric, $A^T = A$

$A = \begin{bmatrix} 1 & 5\\ 5 & 2\\ 22 & 13 \end{bmatrix}$ Examples:	$ \begin{bmatrix} 22\\13\\3 \end{bmatrix} \text{ then } \mathbf{A}^{\mathrm{T}} = \begin{bmatrix} 1 & 5 & 22\\5 & 2 & 13\\22 & 13 & 3 \end{bmatrix} \text{ So} $	$A^{T} = A$, which is symmetric .
$A = \begin{bmatrix} 1 & 5 & 6 \\ 5 & 2 & 11 \\ 6 & 11 & 7 \end{bmatrix}$	$\mathbf{A} = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 2 & -4 \\ -1 & -4 & 3 \end{bmatrix}$	$\mathbf{A} = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 2 & 4 \\ 1 & 4 & 3 \end{bmatrix}$

Anti-symmetric Matrix/ Skew-symmetric matrix

A matrix can be skew symmetric only if it is square. If the transpose of a matrix is equal to the negative of itself, the matrix is said to be **skew symmetric**. This means that for a matrix to be skew symmetric, $A^{T} = -A$.

Let,
$$A = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix}$$
 then $A^{T} = \begin{bmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{bmatrix} = -\begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix} = -A$
So, $A^{T} = -A$, which is **skew symmetric**.

For examples:

(i) $A = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix}$	(ii) $A = \begin{bmatrix} 0 & 2 & -1 \\ -2 & 0 & -4 \\ 1 & 4 & 0 \end{bmatrix}$
(iii) $A = \begin{bmatrix} 0 & -a & -b \\ a & 0 & -c \\ b & c & 0 \end{bmatrix}$	(iv) $A = \begin{bmatrix} 0 & -2 & 3 \\ 2 & 0 & -5 \\ -3 & 5 & 0 \end{bmatrix}$
(v) $A = \begin{bmatrix} 0 & 2 & 3 \\ -2 & 0 & -4 \\ -3 & 4 & 0 \end{bmatrix}$	(vi) $A = \begin{bmatrix} 0 & -2 & -5 \\ 2 & 0 & -3 \\ 5 & 3 & 0 \end{bmatrix}$